Differentiation Techniques

Note: f(x) and g(x) are both functions of x, and $f'(x) = \frac{d}{dx} f(x)$, and $g'(x) = \frac{d}{dx} g(x)$

Basic Differentiation

$$\frac{d}{dx}x^n = nx^{n-1}$$

Remember: Take down the power, power minus 1

Product Rule

$$\frac{d}{dx}f(x)\times g(x) = f(x)g'(x) + f'(x)g(x)$$

Remember: Copy first term and differentiate second term 'plus' copy second term and differentiate first term

Example:

$$\frac{d}{dx}(2x+1)(x-5) = (2x+1)\frac{d}{dx}(x-5) + (x-5)\frac{d}{dx}(2x+1)$$
$$= (2x+1)(1) + (x-5)(2)$$
$$= 4x-9$$

Trignonometrical Functions

$$\frac{d}{dx}\sin[f(x)] = f'(x)\cos[f(x)]$$

$$\frac{d}{dx}\cos[f(x)] = f'(x)[-\sin f(x)]$$

$$\frac{d}{dx}\tan[f(x)] = f'(x)[\sec^2 f(x)]$$

Example,

$$\frac{d}{dx}\sin(1-10x) = \frac{d}{dx}(1-10x)\cos(1-10x)$$

$$= -10\cos(1-10x)$$

$$\frac{d}{dx}\cos(12x-1) = \frac{d}{dx}(12x-1) \times -\sin(12x-1)$$

$$= -12x\sin(12x-1)$$

Exponential Functions

$$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$$

Example:

$$\frac{d}{dx}e^{(2x^2+x)} = \frac{d}{dx}(2x^2+x) \times e^{(2x^2+x)}$$
$$= (4x+1)e^{(2x^2+x)}$$

Logarithmic Functions

$$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$$

Example:

$$\frac{d}{dx}\ln(3x^2 - 10) = \frac{\frac{d}{dx}(3x^2 - 10)}{3x^2 - 10}$$
$$= \frac{\frac{6x}{3x^2 - 10}}{3x^2 - 10}$$

Quotient Rule

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f(x)g'(x) - f'(x)g(x)}{[g(x)]^2}$$

Remember: Copy bottom and differentiate top minus copy top and differentiate bottom, whole function divided by bottom squared

Example:

$$\frac{d}{dx}\frac{2x+1}{4x-5} = \frac{(4x-5)\frac{d}{dx}(2x+1) - (2x+1)\frac{d}{dx}(4x-5)}{(4x-5)^2}$$
$$= \frac{(4x-5)(2) - (2x+1)(4)}{(4x-5)^2} = \frac{-14}{(4x-5)^2}$$

Chain Rule

$$\frac{d}{dx}[f(x)]^n = nf'(x)[f(x)]^{n-1}$$

Remember: Take down the power, power minus 1, multiplied by the differential of the function inside

Example:

$$\frac{d}{dx} (2x+1)^{10} = 10(2x+1)^{10-1} \frac{d}{dx} (2x+1)$$

$$= 10(2x+1)^{9} (2)$$

$$= 20(2x+1)^{9}$$